Lecture 2:
Electron Emission
and Cathode Emittance

« The objectives of this lecture are to define the basic electron
emission statistics, describe the electrical potentials at the cathode
surface, define the thermal emittance and derive the cathode
emittance for thermal, photo-electric and field emission.

« This lecture begins with definitions of Maxwell-Boltzmann and
Fermi-Dirac statistics, and discusses the electric fields at the
cathode surface which the electron needs to overcome to escape.
Then the physics of each of the three emission processes is
described and their cathode emittances are derived.
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Introduction

The electron density inside a cathode is many orders of magnitude
higher than that of the emitted electron beam.

This is seen by considering that the density of conduction band
electrons for metals is 1022 to 1023 electrons/cm3. Whereas the
density of electrons in a 6 ps long, 200 micron diameter cylindrical
bunch with 1 nC of charge is ~101* electrons/cm3. Thus the
transition from bound to free reduces the electron density by eight to
nine orders of magnitude. In addition, the energy spread, or thermal
energy of the electrons inside the cathode material is low. For
example, in copper the energy spread near the Fermi energy Is ~kgT
or 0.02 eV at room temperature (300 degK). However, in order to
release these cold, bound electrons, one needs to heat the cathode
to approximately 2500 degK, resulting in a beam with a thermal
energy of 0.20 eV.
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Types of Electron Emission

In general, the emission process determines the fundamental lower
limit of the beam emittance. This ultimate emittance is often called
the thermal emittance, due to the Maxwell-Boltzmann (MB)
distribution of thermionic emitters. Strictly speaking, the term
'thermal emittance' should only be applied to thermionic emission,
but the concept of thermal emittance or the intrinsic emittance of the
cathode can be applied to the three forms of electron emission:

e 1. thermionic emission,

2. photo-electric emission

3. field emission.
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Electron Statistics and the Emission Process

» Elementary particles in general can be classified as either bosons or
fermions depending upon whether they have integer or half integer
spin, respectively. Bosons obey classical Maxwell-Boltzmann
statistics, while fermions follow Dirac-Fermi statistics. These
statistics define the probability a particle occupies an given energy
state based on the distribution of particles into energy intervals for
the two particle types:

e 1. particles any number of which can share the same energy state,
follow the Maxwell-Boltzmann distribution.

« 2. particles which cannot share the same energy state having only
one particle per energy state, following the Fermi-Dirac distribution.
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The Maxwell-Boltzmann
and Fermi-Dirac Distributions

« The first particle type obeys classical Maxwell-Boltzmann
(M-B) statistics with the energy distribution of occupied
states given by,

—E/kgT
JuB =ce /kB

* For the second particle type, of which electrons are a

member being one-half spin fermions, the energy

distribution of occupied states (DOS) is given by the
Fermi-Dirac (F-D) function,

B 1
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Comparison of M-B and F-D Distributions
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« Comparison of the particle energy distributions in the high-energy
tails of the classical Maxwell-Boltzmann and the quantum
mechanical Fermi-Dirac functions.
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Fields Near the Cathode
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hermionic Emission(1)

In order for an electron to escape a metal it needs to have sufficient
kinetic in the direction of the barrier to overcome the work function,
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hermionic Emission(2)

 Assume that the cathode has an applied electric field
large enough to remove all electrons from the surface,
so there are no space charge effect, but low enough to
not affect the barrier height. Then the thermionic current
density for a cathode at temperature,
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Thermionic Emission (3)

As discussed above and shown in Figure 1, the interactions

Involving the high energy electrons in the tail of the Fermi-

Dirac density of states allows it's replacement with the
classical, Maxwell-Boltzmann distribution,

! I:l-'i-i—t'ﬁ-l—l-'g )
Jthermionic — TOE — Uz f_-"llf B di =n 0€ / Vg€ 2kpT dv
vz >4/ 2edwork

A ')
— S Uy 2 "\,.-"'f 2ePyork/m

*Performing these simple integrals gives the thermionic
current density,
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hermionic Emission(4)

Or with a small change in the leading constants, gives
the Richardson-Dushman equation for thermionic
emission [Reiser, p 8],

: A1 - N2 —dorr kBT
jthﬂr?n-io-n-ic —_ 1—1{1 — 7 JT g Fwor L/ KRB

Here A is 120 amp/cm?/degK?, and (1-r) accounts for
the reflection of electrons at the metal surface. The
reflection and refraction of electrons as they transit the
surface Is discussed In a later section. In terms of
fundamental quantities, the universal constant A s
["Solid State Physics", by Ashcroft and Mermin, p. 363]

e

A=
22 k3
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hermionic Emittance (1)

* The velocity distribution for thermally emitted electrons is obtained
from the derivative of Maxwell-Boltzmann particle distribution,
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hermionic Emittance (2)

Following Lawson [Lawson, p. 209], we assume the normalized
emittance is evaluated close to the cathode surface where the
electron flow is still laminar (no crossing of trajectories) and any
correlation between position and angle can be ignored. In this case,
normalized cathode emittance is given by,

EN = ﬁ"}fJ T pl

The root-mean-square (rms) beam size, c,, is given by the
transverse beam distribution which for a uniform radial distribution
with radius R is R/2. The rms divergence is given by

. 1 2
S N WV

; 7 ~
Ptotal d / &

The normalized, rms thermal emittance is then

(vz)

€n — Og » Reilser, p56-66
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hermionic Emittance (3)

The mean squared transverse velocity for a M-B velocity distribution
IS,

?n'u.g
> 2,72k T |
oty _ R kT
v o V2 om
fO e %BTdvar

Therefore the thermionic emittance of a Maxwell-Boltzmann
distribution at temperature, T, is

€Ethermionic — Ogx
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hermionic Emittance (4)

 The divergence part of the cathode emittance contains all the
physics of both the emission process and the cathode material
properties and as such summarizes much of the interesting physics
of the emission process. The beam size in coordinate space simply
traces out the angular distribution to form the transverse phase
space distribution as illustrated.

Distribution in

Distribution in Phase Space
Coordinate Space
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Thermionic Emission (5)

« Given that o, depends upon the particular transverse distribution
being used, there is often a serious ambiguity which arises when
expressing the thermal emittance in terms of "microns/mm". The
confusion results in not knowing whether rms or flat top radii are
used for the transverse radius. Therefore we suggest quoting a
guantity called the normalized divergence, which for thermionic
emission is

08 I I |

A thermionic —
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Photo-Electric Emission(1)

* Photoelectric emission from a metal can be described by the three
steps of the Spicer model:

1. Photon absorption by the electron
2. Electron transport to the surface
3. Escape through the barrier

Metal Vacuum
4
- 2)Electrons 3)Electrons
g move to surface escape to vacuum
1)Photon
absorbed Potential barrier
Fermi due to spillout electrons
—>
Energy
: Optical depth
occupied A
valence photon
states .

Direction normal to surface
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Photo-Electric Emission (2)

 Thermalization time of electrons in a metal as measured in a pump-
probe experiment:
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Fig. 1: Electron cnergy distnbution function vs. energy with 120 ulfem* absorbed laser Muence at 5
time delays, The dashed ling is the best Fermi-Dirac il and the corresponding electron temperature,
T.. is shown. The verical scale is in units of density of states,

Fann et al., “Observation of the thermalization of electrons in a metal excited by
femtosecond optical pulses,” in Ultrafast Phenomenona, ed. J.-L. Martin, A. Meigus,
G.A. Mourou and A.H. Zewalil, Springer Verlag 1993, p331-334.
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Photo-Electric Emission (3)

Elements of the Three-Step Photoemission Model

Step 1: Absorption of photon Step 2: Step 3: Escape over barrier
Fermi-Dirac distribution at 300degK Transport to surface 2
_ 1 Escape criterion; Promal o g
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Step 1: Absorption of Photon

Optical absorption length and reflectivity of copper

m
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The optical skin depth depends wupon

wavelength and is given by, The reflectivity is given by the Fresnel relation
y) in terms of the real part of the index of refraction,
P =
where k is the imaginary part of the complex ReﬂeC“Vlty = R(nl(a)), n, (C()), 67,)

index of refraction,
n=n+ik

and A is the free space photon wavelength.
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Step 2: Transport to the Surface

metal

vacuum

F.... Probability electron at depth s, absorbs a
photon and escapes without scattering.
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Step 3: Escape Over the Barrier

Protar = JZm(E +ho)

X e >
: : P =P 511’19(:05@ pnormal = \/2m(E +h(()) COSQ
m /;fofai = Y ZM(E-Fﬁ&Jj pr?ormal
8 7 Escape criterion: Tom >Ep + @y
Y/ cos _ pnormal _ / EF +¢eff
max
ptotal E + ha)
VE+hw
E+ho—-E. -¢
metal vacuum Orasin / F
E-+¢ g

While photoemission is regarded quantum mechanical effect due to
guantization of photons, emission itself is classical. l.e., electrons do not
tunnel through barrier, but classically escape over it.
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Derivation of QE
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' ']'] « D. H. Dowell, K.K. King, R.E Kirby and J.F. Schmerge, "In situ cleaning of metal
, cathodes using a hydrogen beam,"” PRST-AB 9, 063502 (2006)
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Comparison of Theory and Experiment
QE vs. Wavelength
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Photo-Electric Emittance (1)

 The mean square of the transverse momentum is related to the
electron distribution function, g(E,&,¢), just inside the cathode surface,

(p2 ) = fIIQ(EaHg@)p%dEd(msQ)d;ﬁ
et T T [ g(E,0,p)dEd(cos)dyp

* The g-function and the integration limits depend upon the emission
processes. We assume for the three-step photo-emission model that
g depends only on energy,

Gphoto = (1 — frp(E 4+ hw)) frp(E)
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Photo-Electric Emittance (2)

e Since the Fermi-Dirac function, f_y, at temperatures near ambient is
well-represented by a Heaviside-step function which then determines
the limits on the energy integration. The &-integration ranges from
zero to 4,..,. Since the transverse moment, p,, IS

Pz = ‘\/2"’”-{5 + fiw ) sinfcosyp

 The mean square of the x-momentum becomes,
2m f£7;+¢:eff—hm dE fﬁ”!,amq+—f,-.i” d(cost) [ dp(E + hw)sin?fcos?

(Do) =
[ dE [ d(cos®) [ dy

« Performing these integrals gives the photo-electric normalized
emittance

[ — fesy

Ephoto = Uz v

Imc?
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Photo-Electric Emittance (3)

 Normalized divergence vs. photon energy for various
applied fields
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Field Emission (1)

Field emission occurs when electrons tunnel through the barrier
potential under the influence of very high fields of 10° V/m or more.
Since emission is by tunneling the effect is purely quantum
mechanical and requires an extremely high electric field to lower the
barrier enough for useful emission.

j = / n(E,,T)D(E,, Ey)dE,

where the supply function, n(E,,T), is the flux of electrons incident
upon the barrier with energies between E, and E, + dE,. The barrier
IS same as that shown earlier and is determined by the work
function, the image charge and the applied electric field, E,. The
transmission of electrons through this barrier is given by the
transparency function, D(E,,E,).
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Field Emission (2)

e The transparency function was solved by Nordheim for the barrier

produced by the image charge and the applied field (Schottky
potential),

62

Q'Ti)Schottky (:E) — — E?Eoflf

16meg

e Theresultis

_87\2m EX? [ /SE
D(E;, Eg) = exp R 9( - U)

3he b 0 O work

* Ay) is the Nordheim function which to a good approximation is
given by

A(y) =1 — 0.142y — 0.855y°
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Field Emission (3)
The supply function for a Fermi-Dirac electron gas was also derived
by Nordheim, U L
ATMNMK D S
(B, T) = =z In (uew )
%

Combining the supply and transparency functions gives the electron

energy spectrum, field( Be, B0, T) =n(E,,T)D(E., Ep)
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Field Emission (4)

» Electron spectra for field emission electrons for various applied fields.
Left: Electron emission spectra plotted with a linear vertical scale and
with arbitrarily normalization to illustrate the spectral shapes.

Right: The spectral yields plotted logarithmically to illustrate the
strong dependence of yield and shape upon applied field.
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Field Emission Emittance

 Armed with the energy spectra the rms energy spread and the field
emission emittance are numerically computed for external fields
between 10° and 10%° Volts/m. (Solved numerically.)

2.5 [ [ [ [

2.10° 4-10° 6-10° 8-10° 1-10"
External Field (V/m)
=== Field Emission Emittance (microns/mm)

== rms Energy Spread (eV)
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Field Enhancement Factor, E = gE,

* In field emission the electron yield is exponentially sensitive to the
external field and any significant current requires fields in excess of
10° V/m. Such high fields are difficult to achieve but are possible
using pulsed high voltages and/or field-enhancing, sharp emitters.
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A collated representation of the field enhancement factors 3 associated with
various idealised microprotrusion geometries. (From Rohrbach [31], with
permission, )

“High Voltage Vacuum Insulation, Basic Concepts and Technological Practice,”

” Ed. Rod Latham, Academic Press 1995
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 The space charge limit and cathode emittance
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What A Real Cathode Looks Like!

LCLS gun cathode after 5 months of operation

1.4 mm diameter
llluminated by
drive laser

July 30, 2007

A
June 6, 2007 August 22, 2007
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Lecture 2 Summary

o This lecture derived the cathode emittances for the three emission
processes: thermionic, photo-electric and field emission. Rather
than using the term, thermal emittance, we prefer to use the general
term of cathode or intrinsic emittance for any emission process. And
Instead define the intrinsic emittance for each of the three emission
processes. The intrinsic emittance for thermionic emission is
approximately 0.3 microns/mm for a cathode temperature of 2500
degK. The photo-electric emittance for a copper cathode ranges
between 0.5 to 1 micron/mm depending upon the photon
wavelength, and the emittance was shown to be proportional to the
guantum efficiency. The field-emission emittance is found to vary
between 0.5 to 2 microns/mm for fields from 10° to 10'° V/m, and
hence has larger emittance for the same source size than the other
two processes.
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